Complex Exon-Intron Marking by Histone Modifications Is Not Determined Solely by Nucleosome Distribution
نویسندگان
چکیده
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons ("exon-intron marking"), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.
منابع مشابه
How do RNA sequence, DNA sequence, and chromatin properties regulate splicing?
Recent genome-wide studies have revealed a remarkable correspondence between nucleosome positions and exon-intron boundaries, and several studies have implicated specific histone modifications in regulating alternative splicing. In addition, recent progress in cracking the 'splicing code' shows that sequence motifs carried on the nascent RNA molecule itself are sufficient to accurately predict ...
متن کاملDNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure.
DNA methylation is known to regulate transcription and was recently found to be involved in exon recognition via cotranscriptional splicing. We recently observed that exon-intron architectures can be grouped into two classes: one with higher GC content in exons compared to the flanking introns, and the other with similar GC content in exons and introns. The first group has higher nucleosome occ...
متن کاملNucleosomes are well positioned in exons and carry characteristic histone modifications.
The genomes of higher organisms are packaged in nucleosomes with functional histone modifications. Until now, genome-wide nucleosome and histone modification studies have focused on transcription start sites (TSSs) where nucleosomes in RNA polymerase II (RNAPII) occupied genes are well positioned and have histone modifications that are characteristic of expression status. Using public data, we ...
متن کاملBiased chromatin signatures around polyadenylation sites and exons.
Core RNA-processing reactions in eukaryotic cells occur cotranscriptionally in a chromatin context, but the relationship between chromatin structure and pre-mRNA processing is poorly understood. We observed strong nucleosome depletion around human polyadenylation sites (PAS) and nucleosome enrichment just downstream of PAS. In genes with multiple alternative PAS, higher downstream nucleosome af...
متن کاملThe Impression of Histone Modification and DNA Methylation in Gastric Cancer Development: Molecular Mechanism Approach
The epigenetic alterations like histone modifications , DNA methylation and others remarkable categories including nucleosome remodeling and RNA mediated targeting have been strongly investigated recently .In this way , beside the notable importance of DNA methylation ,the histone modifications are the most important issues in the tumorogenesis and cancer progression. Moreover...
متن کامل